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In the preceding paper [3], Dunham raised the question whether for n ~ 2
there exists an! 1= Vn ,

Vn = IF(A, x) = f. ak exp(an+kx): Ok E JR, k = 1,2,... , 2nl'
k~1

with a best approximation of degeneracy 2 or more; i.e., a best approximation
in Vn- 2 • Here, approximation is understood in the sense of L1-norm over a
finite real interval I = [a, b]. In this note, we will answer this question by
constructing a function! E C[I],f¢ 0, for which 0 is the unique best approxi­
mation in Vn • Note that Dunham gave the opposite answer to the analogous
problem for rational functions [4].

Our proof depends heavily on an estimation for the derivative of exponen­
tial sums, which is of independent interest. It holds even for the functions in
the strong closure of Vn .1

LEMMA 1. Let a < <X ~ f1 < b. There exists a positive constant
c = c(n, 0, b, <x, f1) such that

max Ig'(x)\ ~ c . max \ g(x) \
XE[a.IlJ xE[a.bJ

(1)

for all g E Vn •

Although this lemma has not been stated explicitly in Schmidt's paper [5],
it is an immediate consequence of (2.13) in [5]. If g E Vn , then we also have
g(n+!l E Vn , and g<n+u has at least n - 1 zeros or vanishes identically [1].

1 A representation for the functions in the closure is given in [1,5]. Observe that V"
in this note corresponds to V"o in [11 and to E"o in [51, while V" corresponds to V" and E" ,
respectively.
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Set K = max Ig(x)l. Then g belongs to the sets satisfying the assumptions of
Theorem 1 in [5]. Hence, that inequality (2.13) may be applied to yield an
estimation of the derivative in the subinterval depending only on n, a, b, <x, fJ,
and (linearly) on K. Another proof which shows the dependency of c on the
parameters will be given in [2].

Now, according to Dunham's paper it is sufficient for our purpose to find
a function f, satisfying for all hE Vn\0

where

Z = {x :f(x) = 0, xEI}.

(2)

(3)

We choose <x, fJo satisfying a < <X < fJo < b. Set c = c(n + 1, a, b, ex, fJo),

and

fJ = min(fJo, ex + 1/3c), (4)

f(x) = lex - ex) • (fJ - x),
0,

if x E (ex, (J),
otherwise.

(5)

Obviously, we have Z = [a, ex] U [fJ, b] =1= I. Let h E Vn , h ~ O. Then

g(x) = rhey) dy E Vn+1'
a

Since

Ig(x)I ~r I h(Y)1 dy ~ f I hi
a I

for x E [a, b], it follows from Lemma 1 that

Ih(x)I = Ig'(x)1 ~ c . sup Ig( Y)I ~ cf I h I,
lIEI I

(6)

where c is the constant used in the construction off By integrating (6), we
obtain

fl 1 f 1 f 1 .B 1 ff I h(x)I dx ~ -3 c I h I < -2 I h I = -2 J I h I + 2 I h I.
a C I I a Z

Hence

which completes the proof.
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